PHYSICAL REVIEW E, VOLUME 64, 016202
Dynamical instability of the motion of atoms in a silicon crystal
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The dynamical nature of the motion of atoms in a silicon crystal is investigated from the information
theoretic standpoint with time series analysis about numerical solutions of molecular dynamics simulation. The
atomic motion exhibits exponential decay of information entropy with a characteristic time scated®f
X 10 1® sec. This observation may be interpreted as a signature of microscopic dynamical instability in solids.
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[. INTRODUCTION such as graphitébecause of difficulty in reproducing inter-
layer interactiong in addition that the employed type of
Deterministic chaos as irregular and unpredictable dythermostat could give rise to false dynamical instability of
namical behavior despite determinism governing the timehe atomic motion. To fix these problems, silicon crystal as a
evolution of a dynamical system has been discovered imicrocanonical ensemble free from implementing thermostat
many macroscopic systems. For microscopic systems, iis chosen as the target system in this work. Silicon systems
contrast, the existence of deterministic chaos has been are tractable and convenient, in that they allow utilizing Ter-
issue of interest to be fixed. Recently Gaspatdl. have  soff's potential that has been shown to successfully repro-
shown experimental evidence of microscopic chaos for aluce elastic propertig®—6] as well as thermodynamic prop-
fluid system[1]. They kept track of erratic motion of a fine erties[7,8]. The present MD simulation is based on a set of
particle suspended on deionized water to estimate the proliNewton’s equations including a particular class of Tersoff's
ability for the Brownian trajectory to remain within given potential.
distances of reference trajectories. Information entropy in- In time series analysis, we generally need to estimate the
ferred from the observations was found to decay exponendimension and the largest Lyapunov exponent to test for evi-
tially with time, which was interpreted as a sign of chaotic dence of dynamical instability suggesting possible existence
behavior of fluid molecules. Such dynamical instability of deterministic chaos. The dimension is related to irreduc-
might be expected to exist for the motion of atoms in solidsible degrees of freedom of a dynamical system. The expo-
as well. Their approach, however, is not applicable to solidsnent corresponds to the rate at which information will be lost
since the characteristic time scale of atomic motion is of awith time from a dynamical system by itself. A standard
prohibitive order below the time resolution of the existing method to infer the dimension is the Grassberger-Procaccia
experimental apparatus. algorithm[9]. This method, however, has been shown to be
In this paper, time series analysis is applied to the motiorable to be fooled by temporally correlated random sequences
of atoms in a crystal cell as numerical solutions of molecularas a linear stochastic process to induce misdiagnosis about
dynamics(MD) simulation to investigate dynamical nature dynamical propertied10]. As shown in this paper, the
of the motion from the information theoretic point of view. Grassberger-Procaccia algorithm, as a direct method of esti-
MD simulation allows us to look at quick motion of micro- mating the dimension seems to yield no good estimates pos-
scopic particles without actual experimental observation angdibly because of the constraint stemming from the size of
is indispensable for the present work. One might wondedata[11]. We instead make use of an indirect approach, i.e.,
why time series analysis, wherein the underlying dynamics ishe diagnostic algorithm recently developed by Wayland
supposed to be unknown, is utilized to analyze dynamicaét al.[12] as a simpler variant of the Kaplan-Glass algorithm
properties of a fully deterministic system whose governing 13]. This method is based on the fact that visible determin-
equations are given beforehand. The present target systeimsm in dynamical behavior should give rise to smoothness of
however, is of too many degrees of freedom to carry outrajectories reconstructed from a time series in phase space.
direct theoretical analysis of the governing equations. Outt allows inferring the dimension indirectly in terms of the
goal is to explore microscopic dynamical instability in con- diversity of directions of neighboring trajectories. A particu-
densed ordered systems, not the physics of a particular méar class of randomness that would appear as a linear stochas-
terial. In a preliminary work, which has not appeared in atic process would be detected sensitively by this method.
publication, we investigated dynamical behavior of atoms in A standard method to infer the Lyapunov spectrum is the
graphite crystal as a canonical ensemble generated by MBano-Sawada algorithii4]. This method is also presumed
simulation based on a set of Langevin’s equations includingo be intractable in this work, when considering degrees of
Tersoff's potential. It was argued, however, that Tersoff'sfreedom of the target system. As an alternative approach, the
potential may be inappropriate to handle anisotropic systemswutual information is estimated as a function of time elaps-
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where'ri expresses the derivative of first order with respect to
time andm; is the massV is a Tersoff's potential to simulate
interatomic interactions, expressed by the following set of
equationg2,3]:

FIG. 1. Schematic diagram of a silicon crystal cell.

ing [15,16. If there is decay of information entropy with
time, a dynamical system can be said to be dynamically un-
stable. Another popular approach to estimating the largest
Lyapunov exponent is the Sugihara-Ma&$7] algorithm
based on short-term predictability of deterministic chaos.
This algorithm is also utilized in this work. It can detect
spontaneous loss of information from a dynamical system in
terms of the decay of predictability with time, in time series
prediction. The largest Lyapunov exponent can be inferred
from the scaling property of the predictive error to the
prediction-time interval[18,19. Unlike the Sano-Sawada
and the Sugihara-May algorithms, however, the mutual in-
formation can provide information about flows of informa-
tion entropy in various directions of crystal. Such informa-
tion is subsidiary to the present objective. Nevertheless, it
might be interesting in the sense that it permits examining
the dependence of the rate of crystal growth on the crystal
direction from the information theoretic point of view.

II. MOLECULAR DYNAMICS SIMULATION

In MD simulations atoms of a dynamical system are
viewed as microscopic particles subjected to classical me-

1
E=> > V(ryp), (2.2
i)
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chanical equations of motion whose potential terms mimicHereE is the total energy of the system, given by the sum of
quantum mechanical aspects of the system. The target syg{r;;) as a nonlinear function of the distangg between the
tem of this work is a silicon crystal cell of a size of 1.629 ith and thejth atoms.V(rj;) is composed of the repulsive

% 1.629x 1.629 nni, consisting of 216 atoms, treated as aterm fg and the attractive terrfi, each multiplied by con-
microcanonical ensemble. Figure 1 illustrates a schematiinuous and smooth cutoff functiofy that determines the
diagram of the cell, where atom 1 represents a central atonyorking range of the potential to drastically reduce compu-
at a general site and atoms 2 and 3 are its nearest neighbatgional burden. Interactions between atoms at a distance ex-

in the [111] and [100] directions, respectively. Let;(t)
= (x;(t),y;i(t),z(t)T, (T, transposgbe the position vector
of theith atom at timet, determined by the following equa-

tion:

dri(t)
gL

—gradv(ri(t)),

ceeding the cutoff distanc®; are neglected. The bond-order
coefficientb;; implements many-body effect on the attractive
term in the sense that it simulates the influence ofithe
valence bondthe valence bond between thth andkth at-
oms on thei-j valence bond in accordance with the angle
0ijx between the bonds. Thus three-body interactions includ-
ing an outlying atom beyon8;; can be incorporated into the
potential through the angular interactions between adjacent
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bonds. Tersoff's potential can simulate interatomic interacimeans of velocity scaling21] at every time step of MD
tions in isotropic systems. However, it may not be able tosimulation(during 50 000 MD stepsuntil stationarity of the
mimic interatomic interactions in anisotropic systems such abond energy is achieved. One MD step corresponds to
graphite crystal where carbon atoms take sipé hybrid or-  2x 10 1° sec(2 fseg. Then alternatively the total energy is
bital configuration, which rendered our previous work onkept constant without the velocity scaling. We thus obtain
graphite crystal to be less reliable. time series data consisting of 10 000 data points over 10 000
Each parameter specifying the potential was determinetD steps. Figure 2 shows, for instance, the first 1000 data
so as to reproduce the cohesive energy of polymorphic silipoints of {x;(t)}3°%° (te N) for atom 1. Frequency power
con crystals as well as static properties of the diamond strugpectra estimated from the time series have a broad-band
ture such as the elastic constant and the bond lefjth  structure, suggesting that the atomic motion contains irregu-
given as lar ingredients. Estimated phonon dispersion relation curves

) indicate optical phonon about 15 THz.
A;=1.8308<1C° eV (i=1,... Naoms,

B;=4.7118 107 ev, I1l. DYNAMICAL ANALYSIS AND DISCUSSION
N, =2.4799<10° m 1, We may view the motion of an atom as a signal emanat-
ing from an information source, and its adjacent atoms as
wi=1.7322<10° m1, receivers of the signal through the interactions between at-
oms. Then the association between positions of a central and
B;=1.1000< 10" ¢, its adjacent atom may reflect information transfer through
the chemical bond as a communication channel. Information
n=7.8734x10°1, transfer between neighboring atoms as well as spontaneous
loss of information from the signal can be measured in terms
¢;=1.003% 10°, of the mutual informatio15,16. Let U={u(t)}}"; andV
={v(t)}\, be time series oN data points as sets of real-
di=1.6217x 10", izations of random variables andv, respectively. The av-
erage mutual informatioh(V;U) expressing the amount of
hj=—5.9825¢10" %, information that one can acquire aboitgiven thatU has

been known, is defined as
R=2.7x10"%0 m,

S=3.0<101% m. I(V;U)=H(V)—H(VIU)=H(U)+H(V)—H(U,V)(. )
3.1
These parameters have been shown to successfully reproduce

the dispersion curves of lattice vibration for the diamondyhere H(U) and H(U,V) denote the information entropy

phase of silicorj5]. . _ ~and the joint information entropy, respectively, expressed as
Numerical solutions are obtained using Verlet's algorithm

[20] under a periodic boundary condition. At the initial stage
of calculation, the atoms are arranged at each site of perfect H(U)=— 2 P(u)log, P(u) 3.2
crystal, and crystal temperature is kept constant at 1000 K by ueu 2 ’ '
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ing a certain amount of information through the synchro-
H(U,V)= _UEUEUEV P(uv)log, P(u,v). (3.3  njzed motion of atoms. Initial rapid decay of the mutual in-
’ formation indicates that infinitesimal difference between

P(-) and P(-,-) are the probability function and the joint initial conditions will grow into a finite magnitude in the
probability function, respectively. WheW is replaced by course of time. That is, the system loses memory about ini-
time-delayed realizations ofi(t), i.e., v(t)=u(t+At), tial conditions very quickly. There is spontaneous and expo-
[(V;U) provides a measure for spontaneous loss of informanential loss of information from the system with a character-
tion with time-elapsing\t. In the present work the probabil- istic time scale of~40 fsec, which can be interpreted as a
ity functions are approximated by one-dimensional and twosignature of dynamical instability.
dimensional histograms each consisting of 256 equisized Figure 4 shows the average mutual information between
partitions and of 258 256 equisized partitions. X1(1),y1(1),z1(t) and x,(t+At),y,(t+At),z,(t+At), re-
Figure 3 shows the average mutual information as a funcspectively. Atom 2 as the nearest neighbor in [th#&1] di-
tion of At betweenx;(t),y;(t),z.(t) and x;(t+At),y,(t rection is directly bonded to atom 1 at a distance of 0.235
+At),z,(t+At), respectively. The mutual information de- nm. The average mutual information between
creases exponentially to reach a minimum at a time lag ok,(t),y;(t),z.(t) and xg(t+At),ys(t+At),z3(t+At) is
40x 10" *® sec(40 fsec, 20 MD stepsNo significant depen- shown in Fig. 5. Atom 3 as the nearest neighbor in[th&0]
dence on the direction of motion can be seen, as expectatirection is not directly bonded to atom 1 at a distance of
from the isotropic structure of the crystal. Weak peaks abou®.543 nm. In each crystal direction, information transfer is as
100 fsec(10 THz, 50 MD stepsand about 200 fse THz,  small as the value to which the mutual information decays in
100 MD stepg may correspond to lattice vibrations convey- Fig. 3. It is difficult to give a physical explanation to particu-
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FIG. 4. Average mutual information between
X1(1),y1(t),z(t) and xp(t+At),y,(t+At),z,(t
+At), respectively, for neighboring atoms in the
[111] direction. Estimates are indicated by,
+, and O for x,y, and z component, respec-
tively.
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lar structures of variations of information transfer about thethe series. The corresponding future values are forecast for
mean level. However, an interesting finding for Figs. 4 and 5u(t,,) generated from the remaining part of the series by the
is that the broad behavior and the mean level of informatiorfollowing procedure. From the library examples, we first find
transfer over a time lag of 300 MD steps are much the sam® + 1 closest vectorsi(t,) (k=1,...,D+1) pointing the
between neighboring atoms in thil1] and the[100] direc-  vertices of the smallest simplex that include&,) in the
tions despite the difference in interatomic distance. WherD-dimensional Euclidean space. We then make predictions
thinking of the relative difference, i.e., 0.235/0.543, the i”'ﬁ(tp+TAt) by calculating a weighted sum of the basis ex-
formation transfer in th¢100] direction may approximately amplesu(t,+ TAt):

double the amount in thgl11] direction. The information

transfer may play an important role in the formation of or- D+l

dered structure in the arrangement of atoms. In this sense the u(te+TAt)exp(—dy)

flow of information entropy may contribute to the rate of U(t,+TAL)= Kt — . (3.6
crystal growth. Hence crystalline structure would grow faster

in the [100] direction in hypothetical competition of crystal g«l exp( — di)

growth. This conjecture seems to agree with the experimen-

tal fact that the rate of crystal growth in theoQ] direction is di=|u(ty) —u(ty)]- (3.7
larger than that in thgl11] direction in solid phase epitaxial

growth on silicon crystalline substratg22]. The predictive error is inevitable in a function approximation

The signature of dynamical instability that has appearedvith sparse examples for any dynamical behavior. A remark-
in the decay of the mutual information is confirmed by virtue able feature of chaos, however, is that the separation of pre-
of the Sugihara-May algorithm. In this method we first con-dicted dynamical behavior from actual one with the
struct phase space with lagged sequences of data points frospediction-time interval is immense due to the instability in-

a time series{u(t)}tN:1 as trinsic to the underlying dynamics. Hence exponential in-
crease in the predictive error withcan be an indication of
u(t)=(u(t),u(t—At), ... u[t—(D—-1)At])", (3.4  chaotic dynamics. The rate of decay of predictability is as-
. ] . cribed to the largest Lyapunov exponen,, as the rate of
whereAt is an appropriate time lag arid denotes the em-  separation of nearby trajectories in the most unstable direc-
bedd|ng dimension. Predictioﬁ—stime StepS intO the future tion in the phase space_ Thw%ax can be inferred from the
can be made by means of function approximation of dynamisca"ng property of the predictive erret-) [18,19:
cal behavior
e(TAt)=e(At)exg Nmad T—1)At]. (3.9
u(t+TAt)=F(u(t))+e(TAt), (3.5
That is,\,.x CaN be estimated as the initial slope of semilog
whereF is approximating function and(TAt) denotes ran- plot of I e(TAt)/e(At)] against T—1)At.
dom variables representing the predictive error. A Sugihara- Figure 6 shows Sugihara-May tests fofx (1)},
May predictor, referred to as a nonlinear local approximation{y,(t)},{z,(t)}. Library examples are generated from the
technique, is utilized to construct the approximating functionfirst 5000 data points. Forecasts are made for the remaining
[17,19. In this predictive method library examples as pairspart of the data. The predictive error is measured in terms of
of u(t) andu(t+ TAt), representing the dynamical behavior the root mean square error between predicted and actual val-
of a time series, are usually generated from the first half ofies normalized by the standard deviation of the actual val-
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ues. To observe initial decay of predictability as precisely asmage of each vector as(t,+TAt) (k=0,1,... K) with
possible,At is set to 1 MD step2 fseg. The embedding  appropriately chosen time interv@lAt. The diversity of di-
dimension is chosen &= 3 at whiche(At) as a function of  rections of neighboring trajectories can be measured in terms
D is minimum [ e(At)=0.074,0.027,0.037 fok, y, andz of the translation error

component There can be seen rapid decay of predictability

for each component. Linear fitting of the semilog plots pro- 1 K lv(ty) —{(v)|?
vides estimates of ,,,,=0.2731, 0.4792, 0.431& fsec) *, Burans= 1 > (3.9
where linear correlation of the fitting is 0.9985, 0.9798, k=0 (o)
0.9866 for x, y, and z component. Thus the largest K
Lyapunov exponent can be said to be positive. However, the (v)= L 2 v(t) (3.10
origin of the discrepancies in the estimates\gf,y iS un- K+l & '
clear.

To infer degrees of visible determinism in the atomic mo- v(t) =u(t+TAL) —u(ty). (3.11

tion, we next make use of the diagnostic algorithm of Way-

land et al. The heart of this algorithm is that neighboring The more visible the determinism is, the smaller Eyg, 5.
trajectories generated from a time series in phase spaceo reduce the stochastic error of estimates, we seek the me-
should point in similar directions if determinism is visible in dians ofE;,,,s for Q sets ofM randomly chosem(t,) and

the series. Phase space is constructed in the same way as then estimate the mean of ti@mediang12]. According to
Sugihara-May algorithm. For a randomly chosen vectoiprevious numerical work19], E;,.,s does not exceed- 0.1
u(ty), we first findK nearest neighbong(t,), then make the for deterministic time series such as finite-dimensional

1 T T T T T T T T T
X —o—
y -
z -3
5
g
= FIG. 7. Wayland tests on the motion of atom
é 01 1 1 (T=5K=4,Q0=20). Estimates are indicated
2 by ¢, + and O for x, y,, andz component,
g respectively.
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chaos, whileE,, ;< lies over~0.5 for temporally correlated tegral as a function of the correlation distance lies between
random noises with various fractional power law spectral0.9843 and 0.9999. Although estimated correlation dimen-
indices (0= a<2). It takes~ 1 independently of the embed- sion is considerably smaller than the corresponding embed-
ding dimension for uncorrelated random noise. ding dimension, no saturation of the correlation dimension
Wayland tests fofx,(t)},{y1(t)},{z41(t)} are shown in  with the embedding dimension as the indication of determin-
Fig. 7. At is set to 10 MD steps from Fig. 3 in accordance istic chaos can be observed. According to Ruelle’s prescrip-
with the prescription proposed in RgfL5]. There can be tion [11], we would need at least {@ata points to capture
seen no significant dependence on the direction of motiorsuch indications. For the present such a large size of data is
The translation error reaches a minimumDat7 and sub- impractical to carry out numerical analysis.
sequently keeps constant. This implies that crossings of tra-
jectories due to inappropriate choice of the embedding di-
mension is substantially diminished at and abdve7,
which results in clearly visible determinism like finite-  The present numerical analysis has disclosed dynamical
dimensional chaos. Reconstructed trajectories look smooth a@istability of the motion of atoms in a silicon crystal, sug-
and aboveD=7. Hence the dimension is inferred to be gesting possible existence of microscopic chaos in con-
greater than seven. The observed dynamical instability is nadensed, ordered systems with a characteristic time scale of
ascribed to a class of randomness that can be viewed astle order 104 sec. Information theoretic analysis can pro-
linear stochastic process, i.e., possibly very high-dimensionalide not only evidence of dynamical instability but insight
chaos. Finite(not very high degrees of freedom seem to into anisotropy in the rate of crystal growth. The diagnostic
have an important effect on the dynamical behavior of atalgorithm of Waylandet al. is effective and tractable to test
oms. However, the dimension, inferred to be greater thaor degrees of visible determinism from time series data of a
seven, may be too large to be estimated by means of themall size, despite indirect approach to estimate the dimen-
Grassberger-Procaccia algorithm because of paucity of dation. The present approach of dynamical analysis would be
points (N=10000). Figure 8 shows estimates of the corre-useful to examine the influence of defects or impurity atoms
lation dimension as a function of the embedding dimensiorintroduced to crystal on dynamical properties of the system,
(At=10 MD steps. Linear correlation of the correlation in- which would be an issue of interest in a future work.

IV. CONCLUSION
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