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Dynamical instability of the motion of atoms in a silicon crystal
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The dynamical nature of the motion of atoms in a silicon crystal is investigated from the information
theoretic standpoint with time series analysis about numerical solutions of molecular dynamics simulation. The
atomic motion exhibits exponential decay of information entropy with a characteristic time scale of;40
310215 sec. This observation may be interpreted as a signature of microscopic dynamical instability in solids.
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I. INTRODUCTION

Deterministic chaos as irregular and unpredictable
namical behavior despite determinism governing the ti
evolution of a dynamical system has been discovered
many macroscopic systems. For microscopic systems
contrast, the existence of deterministic chaos has bee
issue of interest to be fixed. Recently Gaspardet al. have
shown experimental evidence of microscopic chaos fo
fluid system@1#. They kept track of erratic motion of a fin
particle suspended on deionized water to estimate the p
ability for the Brownian trajectory to remain within give
distances of reference trajectories. Information entropy
ferred from the observations was found to decay expon
tially with time, which was interpreted as a sign of chao
behavior of fluid molecules. Such dynamical instabil
might be expected to exist for the motion of atoms in sol
as well. Their approach, however, is not applicable to sol
since the characteristic time scale of atomic motion is o
prohibitive order below the time resolution of the existin
experimental apparatus.

In this paper, time series analysis is applied to the mot
of atoms in a crystal cell as numerical solutions of molecu
dynamics~MD! simulation to investigate dynamical natu
of the motion from the information theoretic point of view
MD simulation allows us to look at quick motion of micro
scopic particles without actual experimental observation
is indispensable for the present work. One might won
why time series analysis, wherein the underlying dynamic
supposed to be unknown, is utilized to analyze dynam
properties of a fully deterministic system whose govern
equations are given beforehand. The present target sys
however, is of too many degrees of freedom to carry
direct theoretical analysis of the governing equations. O
goal is to explore microscopic dynamical instability in co
densed ordered systems, not the physics of a particular
terial. In a preliminary work, which has not appeared in
publication, we investigated dynamical behavior of atoms
graphite crystal as a canonical ensemble generated by
simulation based on a set of Langevin’s equations includ
Tersoff’s potential. It was argued, however, that Tersof
potential may be inappropriate to handle anisotropic syst
1063-651X/2001/64~1!/016202~8!/$20.00 64 0162
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such as graphite~because of difficulty in reproducing inter
layer interactions!, in addition that the employed type o
thermostat could give rise to false dynamical instability
the atomic motion. To fix these problems, silicon crystal a
microcanonical ensemble free from implementing thermo
is chosen as the target system in this work. Silicon syste
are tractable and convenient, in that they allow utilizing T
soff’s potential that has been shown to successfully rep
duce elastic properties@2–6# as well as thermodynamic prop
erties@7,8#. The present MD simulation is based on a set
Newton’s equations including a particular class of Tersof
potential.

In time series analysis, we generally need to estimate
dimension and the largest Lyapunov exponent to test for
dence of dynamical instability suggesting possible existe
of deterministic chaos. The dimension is related to irred
ible degrees of freedom of a dynamical system. The ex
nent corresponds to the rate at which information will be l
with time from a dynamical system by itself. A standa
method to infer the dimension is the Grassberger-Proca
algorithm @9#. This method, however, has been shown to
able to be fooled by temporally correlated random sequen
as a linear stochastic process to induce misdiagnosis a
dynamical properties@10#. As shown in this paper, the
Grassberger-Procaccia algorithm, as a direct method of
mating the dimension seems to yield no good estimates
sibly because of the constraint stemming from the size
data@11#. We instead make use of an indirect approach, i
the diagnostic algorithm recently developed by Wayla
et al. @12# as a simpler variant of the Kaplan-Glass algorith
@13#. This method is based on the fact that visible determ
ism in dynamical behavior should give rise to smoothness
trajectories reconstructed from a time series in phase sp
It allows inferring the dimension indirectly in terms of th
diversity of directions of neighboring trajectories. A partic
lar class of randomness that would appear as a linear stoc
tic process would be detected sensitively by this method

A standard method to infer the Lyapunov spectrum is
Sano-Sawada algorithm@14#. This method is also presume
to be intractable in this work, when considering degrees
freedom of the target system. As an alternative approach
mutual information is estimated as a function of time ela
©2001 The American Physical Society02-1
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ing @15,16#. If there is decay of information entropy wit
time, a dynamical system can be said to be dynamically
stable. Another popular approach to estimating the larg
Lyapunov exponent is the Sugihara-May@17# algorithm
based on short-term predictability of deterministic cha
This algorithm is also utilized in this work. It can dete
spontaneous loss of information from a dynamical system
terms of the decay of predictability with time, in time seri
prediction. The largest Lyapunov exponent can be infer
from the scaling property of the predictive error to t
prediction-time interval@18,19#. Unlike the Sano-Sawad
and the Sugihara-May algorithms, however, the mutual
formation can provide information about flows of inform
tion entropy in various directions of crystal. Such inform
tion is subsidiary to the present objective. Nevertheless
might be interesting in the sense that it permits examin
the dependence of the rate of crystal growth on the cry
direction from the information theoretic point of view.

II. MOLECULAR DYNAMICS SIMULATION

In MD simulations atoms of a dynamical system a
viewed as microscopic particles subjected to classical
chanical equations of motion whose potential terms mim
quantum mechanical aspects of the system. The target
tem of this work is a silicon crystal cell of a size of 1.62
31.62931.629 nm3, consisting of 216 atoms, treated as
microcanonical ensemble. Figure 1 illustrates a schem
diagram of the cell, where atom 1 represents a central a
at a general site and atoms 2 and 3 are its nearest neigh
in the @111# and @100# directions, respectively. Letr i(t)
5„xi(t),yi(t),zi(t)…

T, (T, transpose! be the position vector
of the i th atom at timet, determined by the following equa
tion:

mi

dṙ i~ t !

dt
52gradV„r i~ t !…, ~2.1!

FIG. 1. Schematic diagram of a silicon crystal cell.
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whereṙ i expresses the derivative of first order with respec
time andmi is the mass.V is a Tersoff’s potential to simulate
interatomic interactions, expressed by the following set
equations@2,3#:

E5
1

2 (
iÞ j

V~r i j !, ~2.2!

V~r i j !5 f c~r i j !@ f R~r i j !1bi j f A~r i j !#, ~2.3!

f R~r i j !5Ai j exp~2l i j r i j !, ~2.4!

f A~r i j !5Bi j exp~2m i j r i j !, ~2.5!

f c~r i j !5H 1 ~r i j ,Ri j !,

1

2
1

1

2
cosFp~r i j 2Ri j !

Si j 2Ri j
G ~Ri j <r i j <Si j !,

0 ~r i j .Si j !,
~2.6!

bi j 5x i j ~11b i
nz i j

n !21/2n, ~2.7!

z i j 5 (
kÞ i , j

f c~r ik!g~u i jk !, ~2.8!

g~u i jk !511
ci

2

di
2

1
ci

2

di
21~hi2cosu i jk !2

, ~2.9!

l i j 5
l i1l j

2
, ~2.10!

m i j 5
m i1m j

2
, ~2.11!

Ai j 5AAi1Aj , ~2.12!

Bi j 5ABi1Bj , ~2.13!

Ri j 5ARiRj , ~2.14!

Si j 5ASiSj . ~2.15!

HereE is the total energy of the system, given by the sum
V(r i j ) as a nonlinear function of the distancer i j between the
i th and thej th atoms.V(r i j ) is composed of the repulsiv
term f R and the attractive termf A each multiplied by con-
tinuous and smooth cutoff functionf c that determines the
working range of the potential to drastically reduce comp
tational burden. Interactions between atoms at a distance
ceeding the cutoff distanceSi j are neglected. The bond-orde
coefficientbi j implements many-body effect on the attracti
term in the sense that it simulates the influence of thei -k
valence bond~the valence bond between thei th andkth at-
oms! on the i - j valence bond in accordance with the ang
u i jk between the bonds. Thus three-body interactions incl
ing an outlying atom beyondSi j can be incorporated into th
potential through the angular interactions between adjac
2-2
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FIG. 2. First 1000 data points of$x1(t)%.
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bonds. Tersoff’s potential can simulate interatomic inter
tions in isotropic systems. However, it may not be able
mimic interatomic interactions in anisotropic systems such
graphite crystal where carbon atoms take thesp2 hybrid or-
bital configuration, which rendered our previous work
graphite crystal to be less reliable.

Each parameter specifying the potential was determi
so as to reproduce the cohesive energy of polymorphic
con crystals as well as static properties of the diamond st
ture such as the elastic constant and the bond length@2#,
given as

Ai51.83083103 eV ~ i 51, . . . ,Natoms!,

Bi54.71183102 eV,

l i52.479931010 m21,

m i51.732231010 m21,

b i51.100031026,

n57.873431021,

ci51.00393105,

di51.62173101,

hi525.982531021,

Ri52.7310210 m,

Si53.0310210 m.

These parameters have been shown to successfully repro
the dispersion curves of lattice vibration for the diamo
phase of silicon@5#.

Numerical solutions are obtained using Verlet’s algorith
@20# under a periodic boundary condition. At the initial sta
of calculation, the atoms are arranged at each site of pe
crystal, and crystal temperature is kept constant at 1000 K
01620
-
o
s

d
li-
c-

uce

ct
y

means of velocity scaling@21# at every time step of MD
simulation~during 50 000 MD steps! until stationarity of the
bond energy is achieved. One MD step corresponds
2310215 sec~2 fsec!. Then alternatively the total energy i
kept constant without the velocity scaling. We thus obta
time series data consisting of 10 000 data points over 10
MD steps. Figure 2 shows, for instance, the first 1000 d
points of $x1(t)% t51

10 000 (tPN) for atom 1. Frequency powe
spectra estimated from the time series have a broad-b
structure, suggesting that the atomic motion contains irre
lar ingredients. Estimated phonon dispersion relation cur
indicate optical phonon about 15 THz.

III. DYNAMICAL ANALYSIS AND DISCUSSION

We may view the motion of an atom as a signal eman
ing from an information source, and its adjacent atoms
receivers of the signal through the interactions between
oms. Then the association between positions of a central
its adjacent atom may reflect information transfer throu
the chemical bond as a communication channel. Informa
transfer between neighboring atoms as well as spontan
loss of information from the signal can be measured in ter
of the mutual information@15,16#. Let U5$u(t)% t51

N andV
5$v(t)% t51

N be time series ofN data points as sets of rea
izations of random variablesu and v, respectively. The av-
erage mutual informationI (V;U) expressing the amount o
information that one can acquire aboutV, given thatU has
been known, is defined as

I ~V;U !5H~V!2H~VuU !5H~U !1H~V!2H~U,V!,
~3.1!

where H(U) and H(U,V) denote the information entrop
and the joint information entropy, respectively, expressed

H~U !52 (
uPU

P~u!log2 P~u!, ~3.2!
2-3
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FIG. 3. Average mutual information betwee
x1(t),y1(t),z1(t) and x1(t1Dt),y1(t1Dt),z1(t
1Dt), respectively.
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H~U,V!52 (
uPU,vPV

P~u,v !log2 P~u,v !. ~3.3!

P(•) and P(•,•) are the probability function and the join
probability function, respectively. WhenV is replaced by
time-delayed realizations ofu(t), i.e., v(t)5u(t1Dt),
I (V;U) provides a measure for spontaneous loss of inform
tion with time-elapsingDt. In the present work the probabi
ity functions are approximated by one-dimensional and tw
dimensional histograms each consisting of 256 equisi
partitions and of 2563256 equisized partitions.

Figure 3 shows the average mutual information as a fu
tion of Dt betweenx1(t),y1(t),z1(t) and x1(t1Dt),y1(t
1Dt),z1(t1Dt), respectively. The mutual information de
creases exponentially to reach a minimum at a time lag
40310215 sec~40 fsec, 20 MD steps!. No significant depen-
dence on the direction of motion can be seen, as expe
from the isotropic structure of the crystal. Weak peaks ab
100 fsec~10 THz, 50 MD steps! and about 200 fsec~5 THz,
100 MD steps! may correspond to lattice vibrations conve
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ing a certain amount of information through the synch
nized motion of atoms. Initial rapid decay of the mutual i
formation indicates that infinitesimal difference betwe
initial conditions will grow into a finite magnitude in the
course of time. That is, the system loses memory about
tial conditions very quickly. There is spontaneous and ex
nential loss of information from the system with a charact
istic time scale of;40 fsec, which can be interpreted as
signature of dynamical instability.

Figure 4 shows the average mutual information betwe
x1(t),y1(t),z1(t) and x2(t1Dt),y2(t1Dt),z2(t1Dt), re-
spectively. Atom 2 as the nearest neighbor in the@111# di-
rection is directly bonded to atom 1 at a distance of 0.2
nm. The average mutual information betwe
x1(t),y1(t),z1(t) and x3(t1Dt),y3(t1Dt),z3(t1Dt) is
shown in Fig. 5. Atom 3 as the nearest neighbor in the@100#
direction is not directly bonded to atom 1 at a distance
0.543 nm. In each crystal direction, information transfer is
small as the value to which the mutual information decays
Fig. 3. It is difficult to give a physical explanation to particu
n

e

-

FIG. 4. Average mutual information betwee
x1(t),y1(t),z1(t) and x2(t1Dt),y2(t1Dt),z2(t
1Dt), respectively, for neighboring atoms in th
@111# direction. Estimates are indicated byL,
1, and h for x,y, and z component, respec
tively.
2-4
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FIG. 5. Average mutual information betwee
x1(t),y1(t),z1(t) and x3(t1Dt),y3(t1Dt),z3(t
1Dt), respectively, for neighboring atoms in th
@100# direction. Estimates are indicated byL,
1, and h for x,y, and z component, respec
tively.
th
d
io
m

e
in

r-

of
te
l
e

l

re
ue
n
fr

-

m

r
io
io
irs
or
f o

t for
the
nd

ons
x-

on
rk-
pre-
e

n-
in-

s-

rec-

og

e
ning
s of
val-

val-
lar structures of variations of information transfer about
mean level. However, an interesting finding for Figs. 4 an
is that the broad behavior and the mean level of informat
transfer over a time lag of 300 MD steps are much the sa
between neighboring atoms in the@111# and the@100# direc-
tions despite the difference in interatomic distance. Wh
thinking of the relative difference, i.e., 0.235/0.543, the
formation transfer in the@100# direction may approximately
double the amount in the@111# direction. The information
transfer may play an important role in the formation of o
dered structure in the arrangement of atoms. In this sense
flow of information entropy may contribute to the rate
crystal growth. Hence crystalline structure would grow fas
in the @100# direction in hypothetical competition of crysta
growth. This conjecture seems to agree with the experim
tal fact that the rate of crystal growth in the@100# direction is
larger than that in the@111# direction in solid phase epitaxia
growth on silicon crystalline substrates@22#.

The signature of dynamical instability that has appea
in the decay of the mutual information is confirmed by virt
of the Sugihara-May algorithm. In this method we first co
struct phase space with lagged sequences of data points
a time series$u(t)% t51

N as

u~ t !5„u~ t !,u~ t2Dt !, . . . ,u@ t2~D21!Dt#…T, ~3.4!

whereDt is an appropriate time lag andD denotes the em
bedding dimension. PredictionsT time steps into the future
can be made by means of function approximation of dyna
cal behavior

u~ t1TDt !5F„u~ t !…1e~TDt !, ~3.5!

whereF is approximating function ande(TDt) denotes ran-
dom variables representing the predictive error. A Sugiha
May predictor, referred to as a nonlinear local approximat
technique, is utilized to construct the approximating funct
@17,19#. In this predictive method library examples as pa
of u(t) andu(t1TDt), representing the dynamical behavi
of a time series, are usually generated from the first hal
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the series. The corresponding future values are forecas
u(tp) generated from the remaining part of the series by
following procedure. From the library examples, we first fi
D11 closest vectorsu(tk) (k51, . . . ,D11) pointing the
vertices of the smallest simplex that includesu(tp) in the
D-dimensional Euclidean space. We then make predicti
û(tp1TDt) by calculating a weighted sum of the basis e
amplesu(tk1TDt):

û~ tp1TDt !5

(
k51

D11

u~ tk1TDt !exp~2dk!

(
k51

D11

exp~2dk!

, ~3.6!

dk5uu~ tp!2u~ tk!u. ~3.7!

The predictive error is inevitable in a function approximati
with sparse examples for any dynamical behavior. A rema
able feature of chaos, however, is that the separation of
dicted dynamical behavior from actual one with th
prediction-time interval is immense due to the instability i
trinsic to the underlying dynamics. Hence exponential
crease in the predictive error withT can be an indication of
chaotic dynamics. The rate of decay of predictability is a
cribed to the largest Lyapunov exponentlmax as the rate of
separation of nearby trajectories in the most unstable di
tion in the phase space. Thuslmax can be inferred from the
scaling property of the predictive errore(•) @18,19#:

e~TDt !5e~Dt !exp@lmax~T21!Dt#. ~3.8!

That is,lmax can be estimated as the initial slope of semil
plot of ln@e(TDt)/e(Dt)# against (T21)Dt.

Figure 6 shows Sugihara-May tests for$x1(t)%,
$y1(t)%,$z1(t)%. Library examples are generated from th
first 5000 data points. Forecasts are made for the remai
part of the data. The predictive error is measured in term
the root mean square error between predicted and actual
ues normalized by the standard deviation of the actual
2-5
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FIG. 6. Semilog plots of log@e(TDt)/e(Dt)#
against (T21)Dt for the motion of the atom 1
(D53,Dt52 fsec!. e(•) denotes the normalized
root mean square error. Estimates are indica
by L, 1 and h for x, y, and z component,
respectively.
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ues. To observe initial decay of predictability as precisely
possible,Dt is set to 1 MD step~2 fsec!. The embedding
dimension is chosen asD53 at whiche(Dt) as a function of
D is minimum @e(Dt)50.074,0.027,0.037 forx, y, and z
component#. There can be seen rapid decay of predictabi
for each component. Linear fitting of the semilog plots p
vides estimates oflmax50.2731, 0.4792, 0.4315~2 fsec)21,
where linear correlation of the fitting is 0.9985, 0.979
0.9866 for x, y, and z component. Thus the larges
Lyapunov exponent can be said to be positive. However,
origin of the discrepancies in the estimates oflmax is un-
clear.

To infer degrees of visible determinism in the atomic m
tion, we next make use of the diagnostic algorithm of Wa
land et al. The heart of this algorithm is that neighborin
trajectories generated from a time series in phase sp
should point in similar directions if determinism is visible
the series. Phase space is constructed in the same way a
Sugihara-May algorithm. For a randomly chosen vec
u(t0), we first findK nearest neighborsu(tk), then make the
01620
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image of each vector asu(tk1TDt) (k50,1, . . . ,K) with
appropriately chosen time intervalTDt. The diversity of di-
rections of neighboring trajectories can be measured in te
of the translation error

Etrans5
1

K11 (
k50

K iv~ tk!2^v&i2

i^v&i2
, ~3.9!

^v&5
1

K11 (
k50

K

v~ tk!, ~3.10!

v~ tk!5u~ tk1TDt !2u~ tk!. ~3.11!

The more visible the determinism is, the smaller theEtrans .
To reduce the stochastic error of estimates, we seek the
dians ofEtrans for Q sets ofM randomly chosenu(t0) and
then estimate the mean of theQ medians@12#. According to
previous numerical work@19#, Etrans does not exceed;0.1
for deterministic time series such as finite-dimensio
m
d

FIG. 7. Wayland tests on the motion of ato
1 (T55,K54,Q520). Estimates are indicate
by L, 1 and h for x, y,, and z component,
respectively.
2-6
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FIG. 8. Correlation dimension as a function o
the embedding dimension for the motion of ato
1. Embedding is performed at a time lag ofDt
510 MD steps. Estimates are indicated byL,
1, and h for x,y, and z component, respec
tively.
tra
-

ce

io

tr
d

-
th
e
n
a
n

to
a
ha
t

da
re
io
-

een
en-
ed-

ion
in-
rip-

ta is

ical
g-
on-
e of
o-
ht
tic
t
f a
en-
be

ms
m,
chaos, whileEtrans lies over;0.5 for temporally correlated
random noises with various fractional power law spec
indices (0<a<2). It takes;1 independently of the embed
ding dimension for uncorrelated random noise.

Wayland tests for$x1(t)%,$y1(t)%,$z1(t)% are shown in
Fig. 7. Dt is set to 10 MD steps from Fig. 3 in accordan
with the prescription proposed in Ref.@15#. There can be
seen no significant dependence on the direction of mot
The translation error reaches a minimum atD57 and sub-
sequently keeps constant. This implies that crossings of
jectories due to inappropriate choice of the embedding
mension is substantially diminished at and aboveD57,
which results in clearly visible determinism like finite
dimensional chaos. Reconstructed trajectories look smoo
and aboveD57. Hence the dimension is inferred to b
greater than seven. The observed dynamical instability is
ascribed to a class of randomness that can be viewed
linear stochastic process, i.e., possibly very high-dimensio
chaos. Finite~not very high! degrees of freedom seem
have an important effect on the dynamical behavior of
oms. However, the dimension, inferred to be greater t
seven, may be too large to be estimated by means of
Grassberger-Procaccia algorithm because of paucity of
points (N510 000). Figure 8 shows estimates of the cor
lation dimension as a function of the embedding dimens
(Dt510 MD steps!. Linear correlation of the correlation in
W

.

.
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ta
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n

tegral as a function of the correlation distance lies betw
0.9843 and 0.9999. Although estimated correlation dim
sion is considerably smaller than the corresponding emb
ding dimension, no saturation of the correlation dimens
with the embedding dimension as the indication of determ
istic chaos can be observed. According to Ruelle’s presc
tion @11#, we would need at least 106 data points to capture
such indications. For the present such a large size of da
impractical to carry out numerical analysis.

IV. CONCLUSION

The present numerical analysis has disclosed dynam
instability of the motion of atoms in a silicon crystal, su
gesting possible existence of microscopic chaos in c
densed, ordered systems with a characteristic time scal
the order 10214 sec. Information theoretic analysis can pr
vide not only evidence of dynamical instability but insig
into anisotropy in the rate of crystal growth. The diagnos
algorithm of Waylandet al. is effective and tractable to tes
for degrees of visible determinism from time series data o
small size, despite indirect approach to estimate the dim
sion. The present approach of dynamical analysis would
useful to examine the influence of defects or impurity ato
introduced to crystal on dynamical properties of the syste
which would be an issue of interest in a future work.
g,

ys.
@1# P. Gaspard, M.E. Briggs, M.K. Francis, J.V. Sengers, R.
Gammon, J.R. Dorfman, and R.V. Calabrese, Nature~London!
394, 865 ~1998!.

@2# J. Tersoff, Phys. Rev. B39, 5566~1989!.
@3# J. Tersoff, Phys. Rev. B49, 16 349~1994!.
@4# M. Ishimaru, S. Munetoh, T. Motooka, K. Moriguchi, and A

Shintani, Phys. Rev. B58, 12 583~1998!.
@5# K. Moriguchi, and A. Shintani, Jpn. J. Appl. Phys., Part 137,

414 ~1998!.
@6# T. Motooka, K. Nishihira, S. Munetoh, K. Moriguchi, and A
. Shintani, Phys. Rev. B61, 8537~2000!.
@7# L.J. Porter, S. Yip, M. Yamaguchi, H. Kaburaki, and M. Tan

J. Appl. Phys., Part 181, 96 ~1997!.
@8# L.J. Porter, J.F. Justo, and S. Yip, J. Appl. Phys., Part 182,

5378 ~1997!.
@9# P. Grassberger and I. Procaccia, Phys. Rev. Lett.50, 346

~1983!.
@10# A.R. Osborne and P. Provenzale, Physica D35, 357 ~1989!.
@11# D. Ruelle, Proc. R. Soc. London, Ser. A427, 241 ~1990!.
@12# R. Wayland, D. Bromley, D. Pickett, and A. Passamante, Ph
2-7



.

MIYANO, MUNETOH, MORIGUCHI, AND SHINTANI PHYSICAL REVIEW E 64 016202
Rev. Lett.70, 580 ~1993!.
@13# D.T. Kaplan and L. Glass, Physica D64, 431 ~1993!.
@14# M. Sano and Y. Sawada, Phys. Rev. Lett.55, 1082~1985!.
@15# A.M. Fraser and H.L. Swinney, Phys. Rev. A33, 1134~1986!.
@16# A.M. Fraser, IEEE Trans. Inf. Theory35, 245 ~1989!.
@17# G. Sugihara and R.M. May, Nature~London! 344, 734~1990!.
@18# M. Casdagli, Physica D35, 335 ~1989!.
01620
@19# T. Miyano, Int. J. Bifurcation Chaos Appl. Sci. Eng.6, 2031
~1996!.

@20# L. Verlet, Phys. Rev.159, 98 ~1967!.
@21# L.V. Woodcock, Chem. Phys. Lett.10, 257 ~1971!.
@22# I.G. Kaverina, V.V. Korobtsov, V.G. Zavodinskii, and A.V

Zotov, Phys. Status Solidi A82, 345 ~1984!.
2-8


